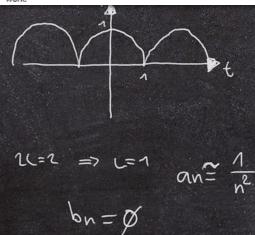


Exponents Lesson Plan

Preparation

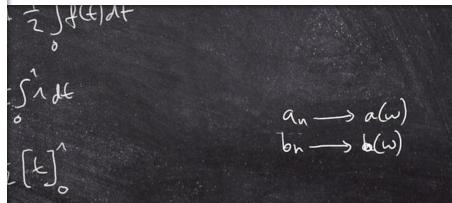

- · Print out a vocabulary board for each student to use throughout unit
 - o Laminate or place in page protector
- Book
 - Print out, laminate, and bind
 - OR your students can listen to the pre-recorded version
- Vocabulary cards
 - Print out a set of cards onto cardstock and laminate
 - Make one set for each student and also one for the teacher to use in I Spy games

Preassessment (do day 1 before starting lesson)

- . Choose the form of the assessment that best fits the learning level of your students
- . Give the assessment to assess what your students may already know
- I cannot emphasize enough how important this step is. If you want to see growth, this preassessment is so important!!

Teaching Tips

- Color Coding: this is a really easy way to add more structure to a matching activity. Outline or color in an empty box or sorting label. Outline or color i the corresponding picture symbols the same colors. Becomes a color matching task.
 - For more info, read more here: https://specialneedsforspecialkids.org/2015/09/05/using-color-coding-fc differentiation/
 - b. I also have a blog post on differentiating one activity 3 ways: https://specialneedsforspecialkids.org/2018/10/22/differentiating-1-activity-1-activit
- Make you own copies of the activities: Every day I review the activity we did vesterday. For that reason:
 - a. I often complete the activity myself and often laminated it for easy revi that I could use year after year.
 - My copies were also helpful as either a model for students who needed more support or as a way for more advanced students to self-check the work.

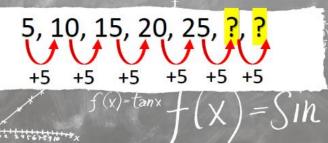

Ouick	Look

Day	Activity	Day	Activity
1	Book: Exponents Vocabulary activity Repeated addition and multiplication with models worksheets	7	Book: Sequences Vocabulary activity Arithmetic or geometric sequences worksheets
2	Book: Exponents Vocabulary activity Repeated addition and multiplication with models worksheets	8	Book: Sequences Vocabulary activity Arithmetic or geometric sequences worksheets
3	Book: Exponents Vocabulary activity Match equivalent expressions with exponents worksheets	9	Book: Graphing Vocabulary activity Linear or exponential graph
4	Book: Exponents Vocabulary activity Match equivalent expressions with exponents worksheets	10	Book: Graphing Vocabulary activity Linear or exponential graph
5	Book: Sequences Vocabulary activity Arithmetic or geometric sequences worksheets	11	Book: your choice Vocabulary cut and paste Sudoku puzzle
6	Book: Sequences Vocabulary activity Arithmetic or geometric sequences worksheets	12	Book: your choice Vocabulary cut and paste Close worksheets
	•	13	Review if needed (plenty of extra worksheets) Assessment

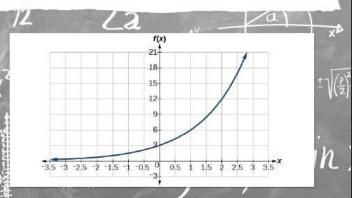
Activity	Notes	Materials
Read or listen to a recording of the book: Sequences (10 minutes)	Read through the story, asking lots of questions Continue to make connections between book and vocabulary board	Book Vocabulary board
Vocabulary cards Go Fish Game ninutes)	Using several completed student sets of vocabulary cards play a traditional go fish game	Vocabulary cards (student sets) Vocabulary board
ence (sheet (w inutes)	Review the worksheet completed yesterday	System of equations worksheet
metic and netric ences (sheets ninutes)	This next set of worksheets has a differentiated version included. Choose the best level for your students Do 1-2 of the worksheets	Worksheet
ng ninutes)	Each student shares one of their finished worksheets with the group using the communication method of their choice	Completed worksheets Communication devices

(a(w)2 + b(w)2

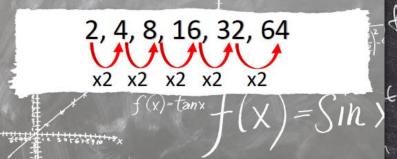
When you see a number that has an exponent, it is a combination of two numbers. The larger number is called the base. In this example, the base is 2.

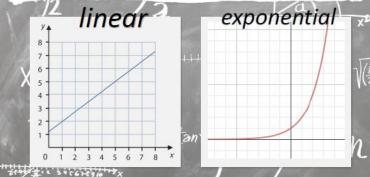

 $= a_0 + a_1 \cdot \cos\left(\frac{\pi k}{L}\right)$ 3 short books

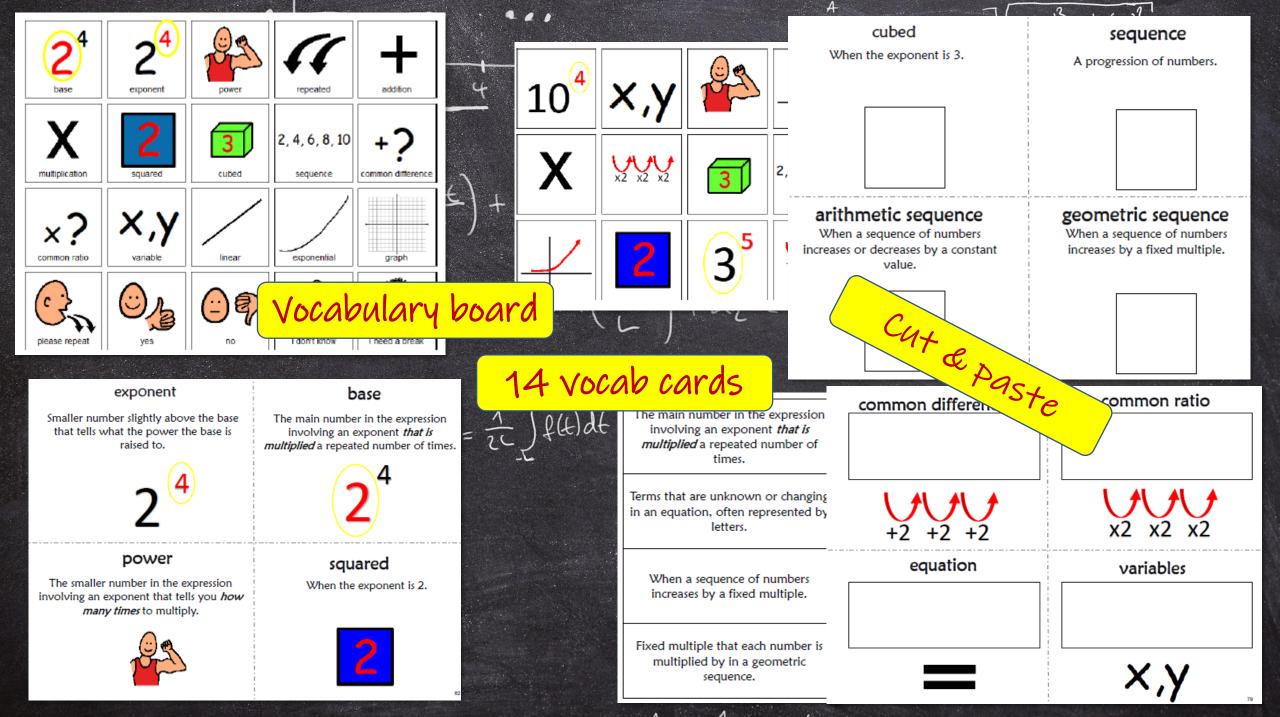
The exponent tells you how many times to multiply the base to itself. Like this:


$$2^4 = 2 \times 2 \times 2 \times 2$$

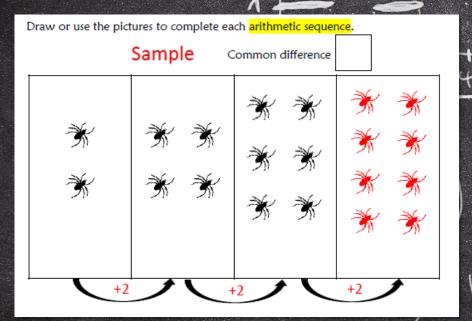
pn=Q


Arithmetic sequences are helpful, because once we determine the pattern, or common difference, we can predict future values.


You probably noticed that numbers get really big quickly when you use exponents. That means the graphs are going to look different too.



This is an example of a different type of sequence. It is a geometric sequence. A geometric sequence increases by a constant called a common ratio.

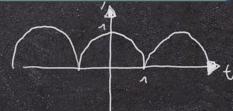


Let's look at them side by side:

Finding the common difference in the arithmetic sequence. The first one is done as an example.

(a(w)2+b(w)2

3, 4, 5, 6, 7


Common difference

Finding the common difference in the arithmetic sequence. The first one is done as an example.

$$2(=2) \Rightarrow c=1$$

$$an = \frac{1}{n^2}$$

$$bn = \emptyset$$

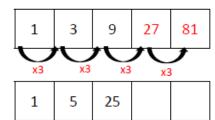
0, 5, 10, 15, 20

Differentiated

Olo =

Common difference

f(4) dt 1 = 1



3, 6, 9, 12, 15

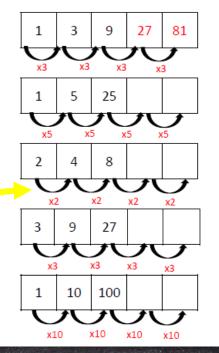
Common difference

Common difference

8

27 3

100 10


Differentiated

2(=2 => L=1 an=

bn=Ø

Arithmetic & Geometric sequences

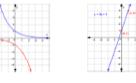
Look at the following geometric sequence and predict what comes next. The first one is done for you. Students may need a calculator.

Circle the correct graph.

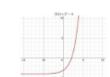
1. linear

2. exponential

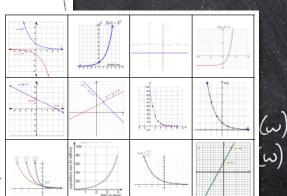
3. linear

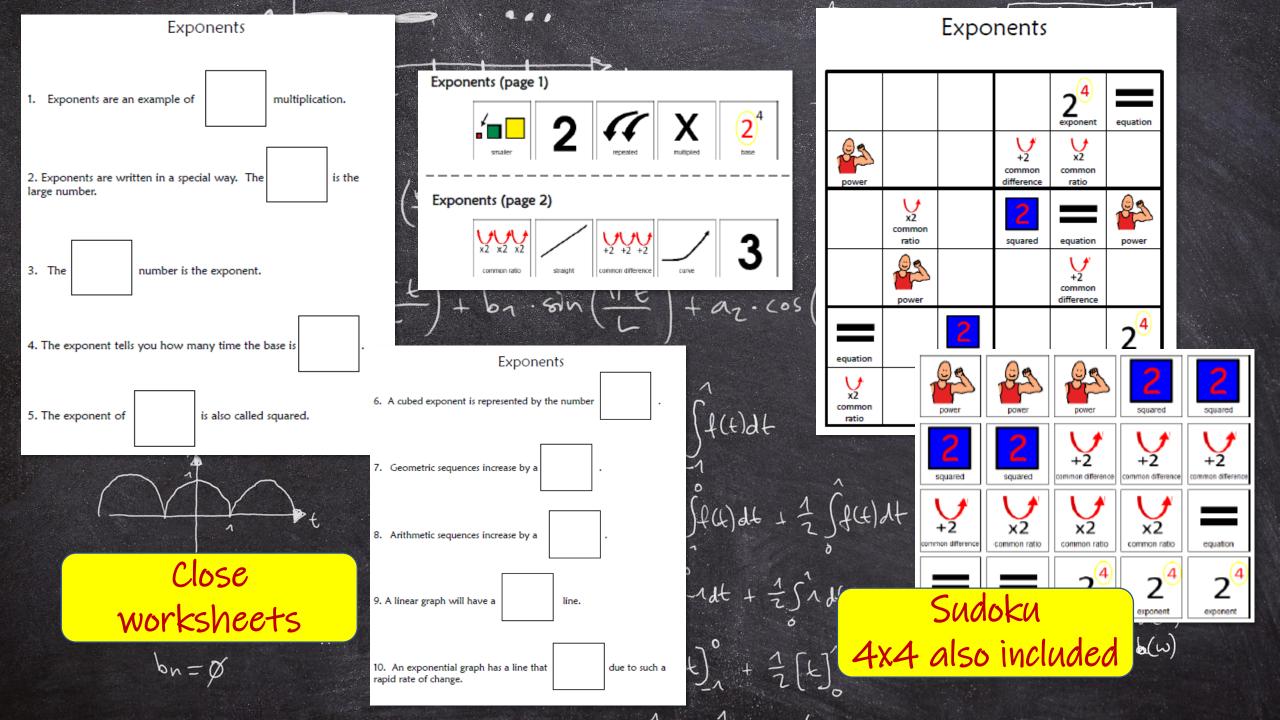


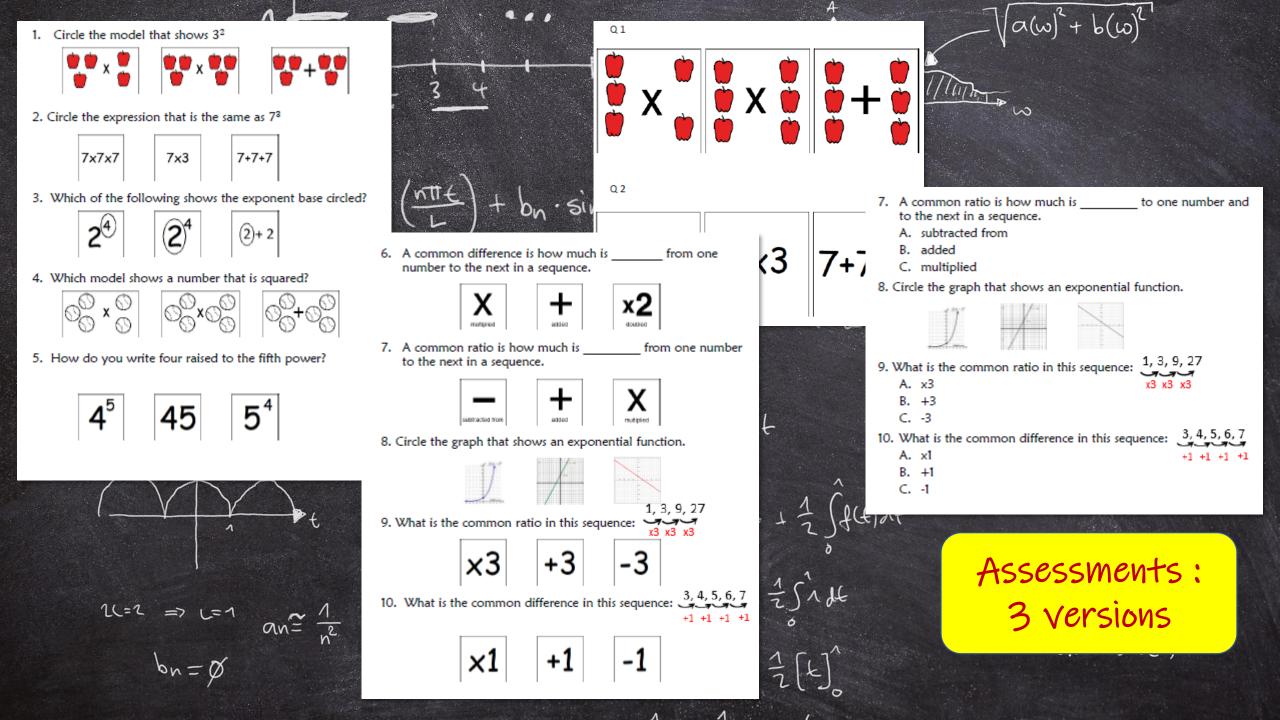
function or equation.



Circle or shade in all the graphs showing a linear







Id graphs: 3 formats

